Evaluate:
$$\log_{16} \frac{1}{4}$$

Inverse: $y = \ln(x+1)$

Graph, D/R, PF: $y = \log_3(x-2) + 4$

Chapter 7.5: Apply Properties of Logarithms

$$\log_b mn = \log_b m + \log_b n$$

$$\log_b \frac{m}{n} = \log_b m - \log_b n$$

$$\log_b m^n = n \log_b m$$

if $\log_4 3 \approx 0.792$ and $\log_4 7 \approx 1.404$ find:

$$\log_4 \frac{3}{7}$$
 $\log_4 21$ $\log_4 49$
 $\log_4 3 - \log_4 7$ $\log_4 (7.3)$ $\log_4 7$ $\log_4 (7) + \log_4 (8)$ $2(\log_4 7)$
0.792-1.404 $1404 + .792$ $2(1.404)$
 2.808

Expand:

$$\log_{6} \frac{5x^{3}}{y}$$

$$\log_{6} \frac{5x^{3}}{y} - \log_{6} \frac$$

Rewrite as one log.

Change of Base Formula:

$$\log_{c} o = \frac{\log_{b} a}{\log_{b} c}$$

Evaluate using common log and natural log.

$$log_3 8 = 1.892$$
 $log_3 = 1.892$
 $log_3 = 1.892$
 $log_3 = 1.892$

For a sound with intensity I, the loudness L(I) of the sound is given by the function

$$L(I) = 10\log\frac{I}{I}$$

Where I_o is the intensity of a barely audible sound(10⁻¹²). An artist in a recording studio turns up the volume of a track so that the sound's intensity doubles. By how many decibels does the loudness increase?

Homework: Chapter 7.5 pg.510 #'s 4,6,10,14,18,22,26,30, 36,40,46,52,58,70